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ABSTRACT |
The extended Kalman Filter (EKF), in the continuous time version,
has to be interpreted in the Ito sense. Therefore, processing of the
(EKF) a1gor§thm is much more involved than has appeared to be the case.
An additional !E—L%ill- differential equations have to be processed

when the EXF is properly interpreted.
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PRESENTATION

Consider the continuous nonlinear stochastic dynamic

system and observations given by

And

Where

dx(t) = £(x(t),t) dt + G(t) aw(t), x(t)) = X (1)

dz(t) = h(x(t), t) dt + dv(t) (2)

§(t) e R" is an 'n' dimensional state vector,

f(x(t),t) is an 'n' dimensional vector valued

function.

n . . . .
Xq € R is an 'n' dimensional Gaussian random

Lo d

vector with mean ib, and covariance Po.
L")

z(t) ¢ R™ is an 'm' dimensional observations vector.

h(g(t),t) is an 'm' dimensional vector valued

function.
w(t) ¢R" is an 'n' dimensional Wiener process with
zero mean and covariance Q(t).

v (t) ¢eR" is an 'n' dimensional Wiener process with

zero mean and covariance R(t).
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Under the assumption that x , w (t), and v (t) are mwtually

T

independent of each other, and R(t) considered to be positive
definite matrix, the widely used Extended Kalman Filter (EKF)

is given by the following-set of equations [1]

ax(t) = £(x(t),t) dt + P(t) a'r(g(t),t)x‘l(t) [dg:t) -

T

(3)

RGE(6), 0 at] , E(ty) = X,

and
d_ P(8) = F(X(0),8) P(t] + PIOFT(X(E), 1) * G(B)QILIGT (¢)
at
- p() BT (x(t),t) R™I(t) H(x(t),e)P(L),
P(t)) = P, : (4)
Where
. [ 3h, (x(t),¢) ]
Hix(t),t) = = . (5)
- 3 xy(t)  Ix(t) = x(t)]
and - )
- s | 2E,(x(8), t) -1
F(x(t),t) 2 - (6)
. | 3%y (t) x(t)=x(t) |

It is clear that the matrices H(,%(t) ,£) and F(x(t),t) as given
by equations (5) and (6) are state estimate dependent.
S " Hence, also the covariance matrix is state estimate dependent,

and a more accurate description of the (EKF) is as follows:

ax(t)=£(x(t) , 1 e (x(e) ,0) [dz(t)-n(x(e) ,v1ae] ,

o x(t ) =% 1)
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$EP (X (), ) =F (X (£) , ) B(X(£) ,£) 4P (X(£) , O T (x(t) , &)+

G(t)Q(t)GT (£) -

P(x(t) ,£)HT (x(t) , )R (DVH(X(t) ,O)P(x(t) &) ,B(t)=P, (8)

Where

K(x(t) ,£)=P(x(t) ,£)H" (x(t) ,&)R"1(¢) is the filter's

gain matrix.

Now, it is easy to recognize that equation (7) is an

Ita stochastic differential equation. Hence, it should

be integrated in the Ita sense. Therefore, whenever numerical
simulations of the (EKF) are carried out, equation (7) has to
be transformed into an eguivalent differential equation in an
ordinary sense such as the Stratonovich sense. The Stratonovich

equivalent of (7) is obtained by modifying the ith component

£, (X(t),t) by the following quantity

Z” - - 3K 5 (x(t),t)
K (x(t, lt) -~ ! 3
Z f=1 Ju1 *% 3 x,(t)

Therefore, for the completeness of the EKF, the expression

9K iy
i S (£),¢) for all i, j, and 2

? xt(t)

has to be included. Denote 35—;KLELLS) by
: ? xi(t)
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K; (;(t),t), ana 2 Px(t),t) py P;i (x(t),t), then
i ax
i

. ) o -
K, (x(t),t)= [ P(x(t), )20 (X(E),E)

i ¥xy
a:fglt) ) gTix(e), ) JRL(e) (9
X.
b §

And for Pi (g(t),t), assuming that P(g(t),t)
i

is continuous in both arguments, we have

d -~ -~ - ~ - -~ R - -~
G By, BO,OTE®, 07 G0 G®),0 PED 04
Py (%(t),O0FT (R(6) ,£)+R(R(t) ,0F;  (k(t),t)
i ~ ~ ~ i ~

Py (X(t),t] BT (%(t), )R- I(LIH(X(L) , £ P(X(L) , &)
b §

P(X(t),t) H (X(t),t) R T(L)H(X(t) ,£)P(X(t),¢)
b §

P(X(t) ,O)HT (X(t) ,£) R (t) H;‘i(é(t),t) P(x(t),t) .

P(X(t),8) HX(x(t),t) RI(t) H(X(t),t) P, (x(t),t),

P;i (to) =0 (10)

for every i =1, 2, .....,n

where
B ey, 4 =2 BEM®) 8 52 [ 3B x(t).0
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a%h, (x(t) , )
= (11)

Oy 3%y x(t) =x(t)
and

afl (*(t) v t)

(;(t),t)=3§iiiElL£) A3
i~ ~ =

x ~
axi axy axj x(t)=x(t)
32, (x(t),t) '

I el T (12) ‘
X xy x(t)=x(t)] ° R

!
o
Conclusion: : *

The continuous time EKF has to be interpreted in the Ito
sense. Therefore, the actual computational requirement

for implementing the EKF is increased. An extra n matrix

i
coupled to the differential matrix Ricatti equation for

differential equations for P; (é(t),t) . i=1,2,...n are

P(x(t),t). Also, the nonlinearities f(x(t),t) and h (x(t),t) P
are assumed to have mixed second order partial derivatives

with respect to the components of x(t). Of course, if an

integration routine that conforms with the Ita definition of
stochastic integral is used in processing the (EKF) algorithm,
then it is sufficient to process equations (7) and (8).

Among the widely used integration routines, the rectangular

routine is the only one that conforms with the Ito definition
of the stochastic integral. The discussion in this note

applies in a similar way to any of the many suboptimal filters

whose gain and, or covariance is estimate dependent.
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In practical implementation, the filter equations (3) and (4) are
discretized. Usually the time increments are taken to be small enough
to assure acceptable accuracy. In order to conform with ito's deffni-
tion of stochastic integral, the system matrices F(x(t),t) and H(x(t),t)
should be held at their values corresponding to the beginning of each

particular increment.
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